

Magma decompression rate calculations with EMBER: A user-friendly software to model diffusion of H₂O, CO₂ and S in melt embayments

Lamont-Doherty Earth Observatory Columbia University | Earth Institute

Guillaume Georgeais¹, Kenneth T. Koga¹, Yves Moussallam^{2,3}, Estelle F. Rose-Koga¹ ¹Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France

²Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10027, USA ³ Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024, USA

1. Introduction

The ascent rate of magmas during volcanic eruptions is a challenging parameter to decipher yet a key in controlling eruption dynamics. The embayment method holds the potential to be applied for a wide range of composition and relies on fitting volatile elements diffusion profiles along a concentration gradient in crystal-hosted open melt pockets [e.g. Liu et al, 2007, Lloyd et al, 2014]. This method has been applied on quartz and feldspaths for dacitic to rhyolitic eruptions and on olivines for more basaltic ones. We introduce EMBER (EMBayment-Estimated Rates), (1) a free tool to estimate the decompression rate of magma, (2) models the diffusion of up to 3 volatile element at once (H_2O , CO_2 and S), (3) can be applied to a range of SiO₂ from basaltic to rhyolitic, (4) assesses the initial concentration of volatile in magmas

Take home messages

• EMBER is an user-friendly GUI program that calculates decompression rates from H₂O, CO₂ and S concentration profiles along embayments of basaltic to rhyolitic compositions.

 EMBER was validated by reproducing previous published literature data.

• For mafic eruptions, we found a notable correlation between maximum recalculated decompression rates and eruption magnitude or plume height (Pearson coefficient of 0.93 with a p-value of 0.01 and R²=0.86).

2. Embayment method

4. Results and discussions

We recalculated decompression rates from previous studies twice: first, to validate

During the ascent, volatile concentration decreases in the melt but not in the embayment. The difference in chemical potential and the resulting concentration gradient is re-equilibrated along the embayment through volatile diffusion, gradually forming a time-dependent diffusion profile. This method requires a numerical model to reproduce the measured diffusion profile and find the eruption-related parameters, like diffusion duration and the therefore the decompression rate, through inversion calculation.

and test how well EMBER reproduced existing results using the parameters from the original studies, and secondly, to homogenize determined decompression rates applying the same protocol to the existing raw data from previous studies, in order to improve inter-study comparison.

In the first case, recalculated decompression rates are in the same order of magnitude as original calculations but notable differences do occur such as for the 1980 Mt St Helens eruption which recalculated decompression rate are at 0.15-0.41 MPa/s, half of the previously reported values [Humphreys et al., 2008].

In the second case, recalculated dataset shows no significant correlation between magma decompression rate and eruption magnitude when considering the entire dataset and shows a weak correlation when considering the subset of decompression rates of **basaltic magma** (Pearson coefficient of 0.24 with a p-value of 0.35 and R²=0.47.) The correlation is significant when considering only the maximum decompression rates of each basaltic eruption (Pearson coefficient of 0.93) with a p-value of 0.01 and R²=0.86). Additionally, there is no significant correlation between decompression rate and plume height when considering the entire dataset. However, once again, a statistically significant trend appears when considering only the maximum decompression rate of the basaltic eruptions (with a Person coefficient of 0.84, a p-value of 0.007 and R²=0.88).

3. EMBER (EMBayment-Estimated Rates)

General Inputs Temperature (°C) 1163 Pstart (MPa) 40 Pend (MPa) 2.75	0.3 0.2 0.1 len	Best fit for H2O on Measured points — Cumulative error b — 00 200 300 gth from mouth (µn	y 50 est fit 400 005	Best fit f	for CO2 only ed points tive error best fit 0 0 100 0 100 length	Best fit for S only Measured points Cumulative error be 200 300 from mouth (µm
File tune: Manua Obernistru	Results					
Plie type. Magria Chemistry.	Name	DecompRate (MPa/s)	1 Std_Dev (MPa/s)	Ascent time (s)	Initial volatile concentration (wt% or ppm)	Least error
Solex Rhyolitic	ReE2					
VolatileCalc	M= 0 wt%					
Basaitic	H2O	0.02	0 +0.032759	2000	0.57	322.9411
CO2 study S study	CO2	0.033103	0 +0.013103	1208.3333	170	25.0887
	S	0.4	-0.033021 +0	100	1320	268.8737
Set working directory	M= 0.1 wt%					
Uncortainty parameters	H2O	0.02	0 +0.019786	2000	0.57	215.7488
Oncertainty parameters	CO2	0.033103	0 +0.013103	1208.3333	170	26.7108
H2O 2RSD (%) 6	S	0.4	-0.033021 +0	100	1320	273.5412
CO2 2RSD (%) 4	M= 0.2 wt%					
S 2RSD (%) 2	H2O	0.02	0 +0.013103	2000	0.57	173.5109
Variability of spot place (µm) 2	CO2	0.033103	0 +0.013103	1208.3333	170	25.8471
Mole fraction of Silling 0.5	S	0.4	-0.033021 +0	100	1320	263.2232
	M= 0.4 wt%					
Molar mass of annydrous melt 35.09	H2O	0.02	0 +0.013103	2000	0.59	122.1134
Number of iterations 101	CO2	0.033103	0 +0.013103	1208.3333	170	27.3548
Name of the embayment ReE2 Weighting and scaling of error Compute Calculation does	Log: [07-Apr-2 Saving fi Calculati [07-Apr-2	2021 15:33:16] Finding les and figures on done in :01:30:27 (h 2021 15:33:39] Calcula	the best fit for all vola h:mm:ss) tion fully terminated	tiles	Dia	alay all figure

EMBER's GUI is standalone and generated with the free Matlab Runtime environment. It is split into two parts inputs (left) and results (right). Several 2D and 3D figures are also generated showing the evolution of the best solution along the 3 mains parameters of the grid search for each studied volatile (H2O, CO2 and S).

Profile generation

Calculation in two steps:

-Generation of diffusion profiles according to the grid search parameters following the 4 equations of initial and boundary conditions,

and Fick's second law.

-Determination of the best fitting profile with a Monte-Carlo statistical analysis. The best fit, with the lowest error, is the profile generated with the resulting decompression rate. and initial concentrations.

Monte-Carlo statistical analysis

Best fit & uncertainty estimation

