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Magma decompression rate calculations with EMBER:
A user-friendly software to model diffusion of H2O,CO2 and S

in melt embayments
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Calculation in two steps:

-Generation of diffusion profiles according to
the grid search parameters following the 4
equations of initial and boundary conditions,
and Fick's second law.

-Determination of the best fitting profile with a
Monte-Carlo statistical analysis. The best fit,
with the lowest error, is the profile generated
with the resulting decompression rate. and
initial concentrations.

EMBER's GUI is standalone and generated with the free Matlab Runtime environment. It is split into
two parts inputs (left) and results (right). Several 2D and 3D figures are also generated showing
the evolution of the best solution along the 3 mains parameters of the grid search for each studied
volatile (H2O, CO2 and S).
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Monte-Carlo statistical analysis

3. EMBER (EMBayment-Estimated Rates)

4. Results and discussions

1. Introduction
The ascent rate of magmas during volcanic eruptions is a challenging parameter to
decipher yet a key in controlling eruption dynamics. The embayment method holds the
potential to be applied for a wide range of composition and relies on fitting volatile
elements diffusion profiles along a concentration gradient in crystal-hosted open melt
pockets [e.g. Liu et al, 2007, Lloyd et al, 2014]. This method has been applied on quartz
and feldspaths for dacitic to rhyolitic eruptions and on olivines for more basaltic ones.
We introduce EMBER (EMBayment-Estimated Rates), (1) a free tool to estimate the
decompression rate of magma, (2) models the diffusion of up to 3 volatile element at
once (H₂O, CO₂ and S), (3) can be applied to a range of SiO₂ from basaltic to rhyolitic, (4)
assesses the initial concentration of volatile in magmas .

� EMBER is an user-friendly GUI program that calculates
decompression rates from H2O, CO2 and S concentration
profiles along embayments of basaltic to rhyolitic
compositions.
� EMBER was validated by reproducing previous
published literature data.
� For mafic eruptions, we found a notable correlation
between maximum recalculated decompression rates
and eruption magnitude or plume height (Pearson
coefficient of 0.93 with a p-value of 0.01 and R²=0.86).
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Take home messages

During the ascent, volatile
concentration decreases in the
melt but not in the embayment. The
difference in chemical potential
and the resulting concentration
gradient is re-equilibrated along
the embayment through volatile
diffusion, gradually forming a
time-dependent diffusion profile.
This method requires a numerical
model to reproduce the measured
diffusion profile and find the
eruption-related parameters, like
the diffusion duration and
therefore the decompression rate,
through inversion calculation.
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We recalculated decompression rates from previous studies twice: first, to validate
and test how well EMBER reproduced existing results using the parameters from
the original studies, and secondly, to homogenize determined decompression
rates applying the same protocol to the existing raw data from previous studies, in
order to improve inter-study comparison.

In the first case, recalculated decompression rates are in the same order of magnitude

as original calculations but notable differences do occur such as for the 1980 Mt St
Helens eruption which recalculated decompression rate are at 0.15-0.41 MPa/s,
half of the previously reported values [Humphreys et al., 2008].

In the second case, recalculated dataset shows no significant correlation between
magma decompression rate and eruption magnitude when considering the entire
dataset and shows a weak correlation when considering the subset of
decompression rates of basaltic magma (Pearson coefficient of 0.24 with a p-value
of 0.35 and R²=0.47.) The correlation is significant when considering only the
maximum decompression rates of each basaltic eruption (Pearson coefficient of 0.93
with a p-value of 0.01 and R²=0.86). Additionally, there is no significant correlation
between decompression rate and plume height when considering the entire
dataset. However, once again, a statistically significant trend appears when
considering only the maximum decompression rate of the basaltic eruptions (with
a Person coefficient of 0.84, a p-value of 0.007 and R²=0.88).


